CALCULATING BALLAST NEEDS

FULLY SATURATED SOIL SURROUNDS THE ENTIRE STATION
STATION IS EMPTY AND WE ALLOW NO CREDIT FOR WASTEWATER
WE DO NOT ALLOW FOR SOIL FORCE ON RIBS OF TANK. ASSUMED SMOOTH WALL TANK.
UPLIFT FORCE OR DENSITY OF WATER = 62.4 LB/CUBIC FOOT.
CONCRETE DENSITY IN AIR = 150 LB/CUBIC FOOT
CONCRETE DENSITY IN WATER = 87.6 LB/CUBIC FOOT OR NET BENEFIT IN WATER
SATURATED SOIL DENISITY = 70 LB/CUBIC FOOT OR NET BENEFIT

CALCULATE THE TANK VOLUME IN <u>CUBIC FEET</u> THAT WILL BE BURIED. AREA OF THE CIRCLE TIMES THE HEIGHT = VOLUME OF THE CYLINDER. THIS DISPLACED VOLUME IS THE AMOUNT OF WATER THAT MAY BE DISPLACED RESULTING IN UPLIFT FORCE AGAINST THE PUMP CHAMBER DEDUCTING FOR THE TANK WEIGHT LEAVES THE WEIGHT OF BALLAST REQUIRED TO SECURE THE PUMP CHAMBER.

TABLE 1									62.4
	STATION HEIGHT			DIAMETER		STATION	TANK VOL.	STATION	UPLIFT FORCE
PUMP MODEL	INCHES	BURIED	FEET	INCHES	FEET	WEIGHT	CUBIC FT.	DENSITY	WATER
DH071-61	60.40	57.40	4.78	26.40	2.20	241	21.44	11.24	-1337.76
DH071-74	73.00	70.00	5.83	26.40	2.20	254	25.43	9.99	-1586.82
DH071-93	91.80	88.80	7.40	26.40	2.20	270	31.39	8.60	-1958.44
DH071-124	123.30	120.30	10.03	26.40	2.20	280	41.36	6.77	-2581.10
DH071-129	127.90	124.90	10.41	26.40	2.20	300	42.82	7.01	-2672.03
DH071-158	157.80	154.80	12.90	26.40	2.20	325	52.29	6.22	-3263.06
DH071-160	159.20	156.20	13.02	26.40	2.20	329	52.74	6.24	-3290.73

BALLAST NEEDS WILL BE ACHIEVED BY ADDING WEIGHT FROM A CONCRETE BALLAST, PLUS WEIGHT OF SOIL TO BE PLACED ON TOP OF BALLAST. BAL-LAST PROVIDES A STRUCTURAL BOND TO THE PUMP CHAMBER THAT LOOSE CONCRETE DOES NOT

VOLUME OF THE RING IS BASED ON A RING DIAMETER OF 36.5 INCHES = 3.04 FEET. RING HEIGHT IS 11.3 INCHES = 0.94 FEET THE RING IS HOLLOW IN THE CENTER SPACE USED BY THE PUMP CHAMBER AND MUST BE DEDUCTED FROM THE VOLUME OF THE CONCRETE RING.

AREA OF THE CONCRTE RING = AREA 1 AREA OF THE PUMP CHAMBER - AREA 2 NET AREA OF BALLAST RING VOLUME OF RING = HEIGHT TIMES THE AREA WEIGHT OF BAL-LAST RING WITH CONCRETE 7.26 SQUARE FEETAREA =3.80 SQUARE FEET

3.46 SQUARE FEET

AREA = ((3.1416 * (DIAM.*DIAM))/4)

3.26 CUBIC FEET DISPLACED BY RING **(Is added to tank volume above) 375.00 POUNDS IN AIR (BASED ON STRUCTURAL TESTING)

SOIL COLUMN ADDED IS EQUAL TO SOIL AREA3.46 SQUARE FEETMULTIPLY BY THE HEIGHT OF THE BURIED SOIL ADJUSTED FOR THE BAL-LAST RING HEIGHTTHE SOIL HEIGHT IS VARIABLE FOR EACH STATION MODEL NOTED ABOVE. SEE TABLE 2 FOR FINAL CONDITION WITH BACKFILLED SOIL

INTERLOCKING BALLAS SYSTEM

CALCULATING BALLAST NEEDS

I ABLE Z										
	STATION	SOIL	SOIL	SOIL	BAL-LAST	STATION	COMBINED	UPLIFT FORCE	FINAL	Margin of
PUMP MODEL	BURIED	COLUMN	VOLUME	WEIGHT	WEIGHT	WEIGHT	WEIGHT	WATER	CONDITION	Safety
DH071-61	4.78	3.84	13.29	930.05	375	241	1546.05	-1337.76	208.30	116%
DH071-74	5.83	4.89	16.92	1184.14	375	254	1813.14	-1586.82	226.32	114%
DH071-93	7.40	6.46	22.33	1563.26	375	270	2208.26	-1958.44	249.82	113%
DH071-124	10.03	9.09	31.41	2198.49	375	280	2853.49	-2581.10	272.39	111%
DH071-129	10.41	9.47	32.73	2291.25	375	300	2966.25	-2672.03	294.23	111%
DH071-158	12.90	11.96	41.35	2894.21	375	325	3594.21	-3263.06	331.16	110%
DH071-160	13.02	12.08	41.75	2922.45	375	329	3626.45	-3290.73	335.72	110%

SOIL COLUMN IS THE BURIED DEPTH LESS THE DISPLACED SOIL FROM THE BAL-LAST RING. CALCULATING THE SOIL WEIGHT AND COMBINING WITH THE PUMP AND BALLAST RING WE GET THE COMBINED WEIGHT SUBSTRACT THE UPLIFT FORCE FROM THE TOTAL STATION WEIGHT TO GET THE FINAL CONDITION **TABLE 2** SHOWS THAT ALL STATIONS WILL NOT FLOAT WITH ONE RING OF BAL-LAST AND BACKFILLED SOIL.

BAL-LAST PROVIDES A FULL STRUCTURAL BLOCK ASSEMBLY THAT TRANSFERS THE LOADS EVENLY AROUND THE PUMP BASE

IMPORTANT NOTE:

TADLES

Page 5 of ENVIRONMENT ONE MODEL DH071 INSTRUCTIONS CLEARLY STATES THE FOLLOWING: " The concrete anchor is not optional. (See Chart 1 on page 12 for specific requirements for your unit)" For more information visit

www.interlockingballast.com